Simultaneous fMRI and fast-scan cyclic voltammetry bridges evoked oxygen and neurotransmitter dynamics across spatiotemporal scales

•By modifying FSCV components, simultaneous fMRI data can be acquired with minimal imaging artifacts.•We detect and quantify evoked dopamine and/or tissue oxygen changes using FSCV during BOLD fMRI.•FSCV-fMRI is used to derive a neurotransmitter-inclusive hemodynamic response function (HRF).•Dopamin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2021-12, Vol.244, p.118634-118634, Article 118634
Hauptverfasser: Walton, Lindsay R, Verber, Matthew, Lee, Sung-Ho, Chao, Tzu-Hao Harry, Wightman, R. Mark, Shih, Yen-Yu Ian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•By modifying FSCV components, simultaneous fMRI data can be acquired with minimal imaging artifacts.•We detect and quantify evoked dopamine and/or tissue oxygen changes using FSCV during BOLD fMRI.•FSCV-fMRI is used to derive a neurotransmitter-inclusive hemodynamic response function (HRF).•Dopamine-derived HRFs can identify brain regions that encode dopamine release amplitude. The vascular contributions of neurotransmitters to the hemodynamic response are gaining more attention in neuroimaging studies, as many neurotransmitters are vasomodulatory. To date, well-established electrochemical techniques that detect neurotransmission in high magnetic field environments are limited. Here, we propose an experimental setting enabling simultaneous fast-scan cyclic voltammetry (FSCV) and blood oxygenation level-dependent functional magnetic imaging (BOLD fMRI) to measure both local tissue oxygen and dopamine responses, and global BOLD changes, respectively. By using MR-compatible materials and the proposed data acquisition schemes, FSCV detected physiological analyte concentrations with high temporal resolution and spatial specificity inside of a 9.4 T MRI bore. We found that tissue oxygen and BOLD correlate strongly, and brain regions that encode dopamine amplitude differences can be identified via modeling simultaneously acquired dopamine FSCV and BOLD fMRI time-courses. This technique provides complementary neurochemical and hemodynamic information and expands the scope of studying the influence of local neurotransmitter release over the entire brain.
ISSN:1053-8119
1095-9572
1095-9572
DOI:10.1016/j.neuroimage.2021.118634