Inhibition of p53 and/or AKT as a new therapeutic approach specifically targeting ALT cancers

While the majority of all human cancers counteract telomere shortening by expressing telomerase,∼15% of all cancers maintain telomere length by a telomeraseindependent mechanism known as alternative lengthening of telomeres (ALT). Here, we show that high load of intrinsic DNA damage is present in AL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein & cell 2019-11, Vol.10 (11), p.808-824
Hauptverfasser: Ge, Yuanlong, Wu, Shu, Zhang, Zepeng, Li, Xiaocui, Li, Feng, Yan, Siyu, Liu, Haiying, Huang, Junjiu, Zhao, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While the majority of all human cancers counteract telomere shortening by expressing telomerase,∼15% of all cancers maintain telomere length by a telomeraseindependent mechanism known as alternative lengthening of telomeres (ALT). Here, we show that high load of intrinsic DNA damage is present in ALT cancer cells, leading to apoptosis stress by activating p53-independent, but JNK/c-Myc-dependent apoptotic pathway. Notably, ALT cells expressing wild-type p53 show much lower apoptosis than p53-deficient ALT cells. Mechanistically, we find that intrinsic DNA damage in ALT cells induces low level of p53 that is insufficient to initiate the transcription of apoptosis-related genes, but is sufficient to stimulate the expression of key components of mTORC2 (mTOR and Rictor), which in turn leads to phosphorylation of AKT. Activated AKT (p-AKT) thereby stimulates downstream anti-apoptotic events. Therefore, p53 and AKT are the key factors that suppress spontaneous apoptosis in ALT cells. Indeed, inhibition of p53 or AKT selectively induces rapid death of ALT cells in vitro, and p53 inhibitor severely suppresses the growth of ALT-cell xenograft tumors in mice. These findings reveal a previously unrecognized function of p53 in antiapoptosis and identify that the inhibition of p53 or AKT has a potential as therapeutics for specifically targeting ALT cancers.
ISSN:1674-800X
1674-8018
DOI:10.1007/s13238-019-0634-z