Kinetics of Phenolic Compounds Modification during Maize Flour Fermentation

This study aimed to investigate the kinetics of phenolic compound modification during the fermentation of maize flour at different times. Maize was spontaneously fermented into sourdough at varying times (24, 48, 72, 96, and 120 h) and, at each point, the pH, titratable acidity (TTA), total soluble...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2021-11, Vol.26 (21), p.6702
Hauptverfasser: Adebo, Oluwafemi Ayodeji, Oyedeji, Ajibola Bamikole, Adebiyi, Janet Adeyinka, Chinma, Chiemela Enyinnaya, Oyeyinka, Samson Adeoye, Olatunde, Oladipupo Odunayo, Green, Ezekiel, Njobeh, Patrick Berka, Kondiah, Kulsum
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aimed to investigate the kinetics of phenolic compound modification during the fermentation of maize flour at different times. Maize was spontaneously fermented into sourdough at varying times (24, 48, 72, 96, and 120 h) and, at each point, the pH, titratable acidity (TTA), total soluble solids (TSS), phenolic compounds (flavonoids such as apigenin, kaempferol, luteolin, quercetin, and taxifolin) and phenolic acids (caffeic, gallic, ferulic, -coumaric, sinapic, and vanillic acids) were investigated. Three kinetic models (zero-, first-, and second-order equations) were used to determine the kinetics of phenolic modification during the fermentation. Results obtained showed that fermentation significantly reduced pH, with a corresponding increase in TTA and TSS. All the investigated flavonoids were significantly reduced after fermentation, while phenolic acids gradually increased during fermentation. Among the kinetic models adopted, first-order (R = 0.45-0.96) and zero-order (R = 0.20-0.82) equations best described the time-dependent modifications of free and bound flavonoids, respectively. On the other hand, first-order (R = 0.46-0.69) and second-order (R = 0.005-0.28) equations were best suited to explain the degradation of bound and free phenolic acids, respectively. This study shows that the modification of phenolic compounds during fermentation is compound-specific and that their rates of change may be largely dependent on their forms of existence in the fermented products.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules26216702