Impact of stratification phenomena on a nonlinear radiative flow of sutterby nanofluid

In the recent years, rapid developments in nanotechnology have developed a great prospects for researchers to check up. Thermal performance of nanofluid is well scrutinized by global scientists. Keeping aforesaid pragmatism of nanofluids, we have considered Sutterby liquid under thermophoretic and B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research and technology 2021-11, Vol.15, p.306-314
Hauptverfasser: Khan, W.A., Anjum, N., Waqas, M., Abbas, S.Z., Irfan, M., Muhammad, Taseer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the recent years, rapid developments in nanotechnology have developed a great prospects for researchers to check up. Thermal performance of nanofluid is well scrutinized by global scientists. Keeping aforesaid pragmatism of nanofluids, we have considered Sutterby liquid under thermophoretic and Brownian movement's aspects. Radiation and stratification phenomenon for thermal analysis of Sutterby nanoliquid are considered. By invoking some appropriate transformations and boundary conditions the given partial differential equations are converted into coupled system of ODEs (ordinary differential equations). Then by using Bvp4c algorithm, we resolved these ODEs numerically. Graphs are designed to check the behavior of appropriate parameters on velocity, temperature, and concentration distribution. Consequences extracts that increase in Hartmann number decays the velocity profile whereas opposite behavior is accounted for temperature distribution. It is also observed that for larger values of thermal stratification phenomenon deteriorates the transportation rate of heat. Furthermore, Sutterby fluid model calculates the features of pseudoplastic plus dilatant solutions. This study is very suitable for extraordinary polymer resolutions plus polymer melts.
ISSN:2238-7854
DOI:10.1016/j.jmrt.2021.08.011