Asymptotic behavior for a dissipative plate equation in $R^N$ with periodic coefficients

In this work we study the asymptotic behavior of solutions of a dissipative plate equation in $mathbb{R}^N$ with periodic coefficients. We use the Bloch waves decomposition and a convenient Lyapunov function to derive a complete asymptotic expansion of solutions as $to infty$. In a first approximati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of differential equations 2008-03, Vol.2008 (46), p.1-23
Hauptverfasser: Eleni Bisognin, Vanilde Bisognin, Ademir Fernando Pazoto, Ruy Coimbra Charao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we study the asymptotic behavior of solutions of a dissipative plate equation in $mathbb{R}^N$ with periodic coefficients. We use the Bloch waves decomposition and a convenient Lyapunov function to derive a complete asymptotic expansion of solutions as $to infty$. In a first approximation, we prove that the solutions for the linear model behave as the homogenized heat kernel.
ISSN:1072-6691