Asymptotic behavior for a dissipative plate equation in $R^N$ with periodic coefficients
In this work we study the asymptotic behavior of solutions of a dissipative plate equation in $mathbb{R}^N$ with periodic coefficients. We use the Bloch waves decomposition and a convenient Lyapunov function to derive a complete asymptotic expansion of solutions as $to infty$. In a first approximati...
Gespeichert in:
Veröffentlicht in: | Electronic journal of differential equations 2008-03, Vol.2008 (46), p.1-23 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work we study the asymptotic behavior of solutions of a dissipative plate equation in $mathbb{R}^N$ with periodic coefficients. We use the Bloch waves decomposition and a convenient Lyapunov function to derive a complete asymptotic expansion of solutions as $to infty$. In a first approximation, we prove that the solutions for the linear model behave as the homogenized heat kernel. |
---|---|
ISSN: | 1072-6691 |