Prescribed Performance Control for the Upper-Limb Exoskeleton System in Passive Rehabilitation Training Tasks

In this study, a model-free adaptive sliding mode control method was developed in combination with the prescribed performance method. On this basis, this study attempted to fulfill the joint position tracking trajectory task for the one-degree of freedom (DOF) upper-limb exoskeleton in passive robot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-11, Vol.11 (21), p.10174
Hauptverfasser: Zhao, Zhirui, Xiao, Jichun, Jia, Hongyun, Zhang, Hang, Hao, Lina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, a model-free adaptive sliding mode control method was developed in combination with the prescribed performance method. On this basis, this study attempted to fulfill the joint position tracking trajectory task for the one-degree of freedom (DOF) upper-limb exoskeleton in passive robot-assisted rehabilitation. The proposed method is capable of addressing the defect of the initial error in the controller design and the application by adopting a tuning function, as compared with other prescribed performance methods. Moreover, the method developed here was not determined by the dynamic model parameters, which merely exploit the input and output data. Theoretically, the stability exhibited by the proposed controller and the tracking performance can be demonstrated. From the experimental results, the root mean square of the tracking error is equal to 1.06 degrees, and the steady-state tracking error converges to 1.91 degrees. These results can verify the expected performance of the developed control method.
ISSN:2076-3417
2076-3417
DOI:10.3390/app112110174