A link between Kendall’s τ, the length measure and the surface of bivariate copulas, and a consequence to copulas with self-similar support

Working with shuffles, we establish a close link between Kendall’s , the so-called length measure, and the surface area of bivariate copulas and derive some consequences. While it is well known that Spearman’s of a bivariate copula is a rescaled version of the volume of the area under the graph of ,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dependence modeling 2023-11, Vol.11 (1), p.347-365
Hauptverfasser: Sánchez, Juan Fernández, Trutschnig, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Working with shuffles, we establish a close link between Kendall’s , the so-called length measure, and the surface area of bivariate copulas and derive some consequences. While it is well known that Spearman’s of a bivariate copula is a rescaled version of the volume of the area under the graph of , in this contribution we show that the other famous concordance measure, Kendall’s , allows for a simple geometric interpretation as well – it is inextricably linked to the surface area of
ISSN:2300-2298
2300-2298
DOI:10.1515/demo-2023-0105