Dendritic Cell Targeting of Bovine Viral Diarrhea Virus E2 Protein Expressed by Lactobacillus casei Effectively Induces Antigen-Specific Immune Responses via Oral Vaccination

Bovine viral diarrhea caused by bovine viral diarrhea virus (BVDV) is an important disease in cattle, resulting in significant economic losses to the cattle industry worldwide. In order to develop an effective vaccine against BVDV infection, we constructed a dendritic cell (DC)-targeting oral probio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Viruses 2019-06, Vol.11 (6), p.575
Hauptverfasser: Wang, Yixin, Feng, Baohua, Niu, Chao, Jia, Shuo, Sun, Chao, Wang, Zhuo, Jiang, Yanping, Cui, Wen, Wang, Li, Xu, Yigang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bovine viral diarrhea caused by bovine viral diarrhea virus (BVDV) is an important disease in cattle, resulting in significant economic losses to the cattle industry worldwide. In order to develop an effective vaccine against BVDV infection, we constructed a dendritic cell (DC)-targeting oral probiotic vaccine (pPG-E2-DCpep/LC W56) using as antigen delivery carrier to express BVDV glycoprotein E2 fused with DC-targeting peptide, and the immunogenicity of orally administered probiotic vaccine was evaluated in mice model. Our results showed that after immunization with the probiotic vaccine, significantly levels of antigen-specific sera IgG and mucosal sIgA antibodies ( < 0.05) with BVDV-neutralizing activity were induced in vivo. Challenge experiment showed that pPG-E2-DCpep/LC W56 can provide effective immune protection against BVDV, and BVDV could be effectively cleared from the intestine of immunized mice post-challenge. Moreover, the pPG-E2-DCpep/LC W56 could efficiently activate DCs in the intestinal Peyer's patches, and significantly levels of lymphoproliferative responses, Th1-associated IFN-γ, and Th2-associated IL-4 were observed in mice immunized with pPG-E2-DCpep/LC W56 ( < 0.01). Our results clearly demonstrate that the probiotic vaccine could efficiently induce anti-BVDV mucosal, humoral, and cellular immune responses via oral immunization, indicating a promising strategy for the development of oral vaccine against BVDV.
ISSN:1999-4915
1999-4915
DOI:10.3390/v11060575