High-Strain-Rate Compressive Behavior of UHMWPE Fiber Laminate

Ultra-high-molecular-weight polyethylene (UHMWPE) fiber laminate is currently widely used in ballistic protection for its exceptional physical and mechanical properties. However, the dynamic compressive mechanism of UHMWPE laminate remains poorly understood. Therefore, the stress–strain relationship...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-02, Vol.10 (4), p.1505
Hauptverfasser: Zhu, Yihui, Zhang, Xiaoyun, Xue, Benyuan, Liu, Hengsha, Wen, Yaoke, Xu, Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultra-high-molecular-weight polyethylene (UHMWPE) fiber laminate is currently widely used in ballistic protection for its exceptional physical and mechanical properties. However, the dynamic compressive mechanism of UHMWPE laminate remains poorly understood. Therefore, the stress–strain relationship, the influence of different thickness, area, and shape, and the maximum stress and fracture stress are studied in both out-of-plane and in-plane directions under quasi-static and dynamic loading using a universal test machine, Split Hopkinson pressure bar (SHPB), and high-speed camera. Furthermore, numerical models with cohesive elements are developed. The results indicate a dependency on strain rate and loading direction. Firstly, the stress–strain curve of dynamic testing can be divided into different zones according to different loading directions and strain rates. Secondly, with the increase of the strain rate in the dynamic testing, the maximum stress and fracture stress increase as well; relatively speaking, the fracture stress in the out-of-plane direction is greater than the fracture stress in the in-plane direction. Thirdly, both experiment and simulation indicate that the thickness does not influence the modulus clearly the in out-of-plane direction but influences the modulus in the in-plane direction. Fourthly, the fracture stress of dynamic testing is higher than the fracture stress of quasi-static testing in both directions. Finally, the numerical results show good agreement with the experiment in terms of the maximum stress and failure form.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10041505