Behavior of Regular Insulin in a Parenteral Nutrition Admixture: Validation of an LC/MS-MS Assay and the In Vitro Evaluation of Insulin Glycation

Parenteral-nutrition (PN)-induced hyperglycemia increases morbidity and mortality and must be treated with insulin. Unfortunately, the addition of insulin to a ternary PN admixture leads to a rapid decrease in insulin content. Our study's objective was to determine the mechanistic basis of insu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutics 2022-05, Vol.14 (5), p.1081
Hauptverfasser: Henry, Heloise, Goossens, Jean-François, Kouach, Mostafa, Lannoy, Damien, Seguy, David, Dine, Thierry, Odou, Pascal, Foulon, Catherine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Parenteral-nutrition (PN)-induced hyperglycemia increases morbidity and mortality and must be treated with insulin. Unfortunately, the addition of insulin to a ternary PN admixture leads to a rapid decrease in insulin content. Our study's objective was to determine the mechanistic basis of insulin's disappearance. The literature data suggested the presence of a glycation reaction; we therefore validated an LC-MS/MS assay for insulin and glycated insulin. In a 24-h stability study, 20 IU/L of insulin was added to a binary PN admixture at pH 3.6 or 6.3. When the samples were diluted before analysis with a near-neutral diluent, insulin was fully stable at pH 3.6, while a loss of around 50% was observed at pH 6.3. Its disappearance was shown to be inversely correlated with the appearance of monoglycated insulin (probably a Schiff base adduct). Monoglycated insulin might also undergo a back-reaction to form insulin after acidic dilution. Furthermore, a second monoglycated insulin species appeared in the PN admixture after more than 24 h at high temperature (40 °C) and a high insulin concentration (1000 IU/L). It was stable at acidic pH and might be an Amadori product. The impact of insulin glycation under non-forced conditions on insulin's bioactivity requires further investigation.
ISSN:1999-4923
1999-4923
DOI:10.3390/pharmaceutics14051081