Enhanced centroid-based energy-efficient clustering routing protocol for serverless based wireless sensor networks

Serverless computing is a new concept as cloud computing, which dynamically manages the networks and is applied in Serverless Wireless Sensor Networks (SWSN) to help the networks. These networks are becoming famous for monitoring various physical and environmental factors. Serverless computing also...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of King Saud University. Computer and information sciences 2024-06, Vol.36 (5), p.102067, Article 102067
Hauptverfasser: Karim, Seemab, Qureshi, Kashif Naseer, Ibrahim, Ashraf Osman, Abulfaraj, Anas W., Ghafoor, Kayhan Zrar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Serverless computing is a new concept as cloud computing, which dynamically manages the networks and is applied in Serverless Wireless Sensor Networks (SWSN) to help the networks. These networks are becoming famous for monitoring various physical and environmental factors. Serverless computing also facilitates the networks by offering an extensive range of applications. Different applications have been designed for monitoring purposes where the sensor nodes sense the data and transmit it to the base station through single or multi-hop routing. However, existing routing protocols cannot manage the sensor nodes’ energy issues because of the complex routing processes and depleted their power before their time. Because of these limitations, the nodes close to BS continuously rely on the network for data forwarding. As a result, these nodes cause energy consumption and lead to a useless state. This paper proposes a serverless architecture and designs an Enhanced Centroid-based Energy Efficient Clustering (ECEEC) protocol for SWSN networks. The proposed serverless architecture provides automated scalability, cost-effective services, and stateless execution. In addition, the proposed protocol offers the cluster head selection and its rotation to maximize the energy efficiency in the network. Furthermore, gateway nodes are chosen in every cluster to overcome the load on the cluster head. Simulation results indicated the excellent performance of the proposed protocol as compared to the existing routing protocols concerning network lifetime and energy consumption. The proposed protocol shows better reliability with nodes failing at 650 rounds compared to 600 rounds, especially with 5 % and 10 % Cluster Heads. The proposed protocol exhibits superior energy efficiency consumption of SNs under varying CH percentages, indicating the protocol’s consistent performance across different scenarios.
ISSN:1319-1578
2213-1248
DOI:10.1016/j.jksuci.2024.102067