Selection of Suitable Sugar Beet Genotypes for Winter Sowing (Pending) in Torbat-e-Jam Region

IntroductionMost areas under spring sugar beet cultivation face severe water restrictions and increasing the area under cultivation of this crop in most of these areas is contrary to the principle of conservation of water and soil resources. The use of new areas for winter sugar beet cultivation sho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pizhūhishhā-yi zirāʻī-i Īrān 2022-09, Vol.20 (3), p.335-348
Hauptverfasser: H Hamidi, M Ahmadi, D Taleghani
Format: Artikel
Sprache:per
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:IntroductionMost areas under spring sugar beet cultivation face severe water restrictions and increasing the area under cultivation of this crop in most of these areas is contrary to the principle of conservation of water and soil resources. The use of new areas for winter sugar beet cultivation should be the area under cultivation of this crop in hot and dry areas. Therefore, winter sowing (pending) of sugar beet with emphasis on the limitations of the country's water resources has been proposed as a solution.Materials and MethodsIn this study, the quantitative and qualitative yield of 16 sugar beet genotypes in winter planting were studied as a randomized complete block design with four replications in the Torbat-e-Jam region in the two cropping years (2020-2021 and 2021-2022). The studied genotypes included F-20739, F-20837, F-21083, SBSI-5, SBSI-15, SVZA 2019-JD389, SVZA 2019-JD0402, SVZA 2019-JD0400, SVZA 2019-JD0401, FDIR 19 B 3021, FDIR 19 B 4028, F-20591, SBSI-6, SBSI-16, SBSI-7 and SBSI-17 are the breeding populations obtained from the gene bank of the Sugar Beet Seed Breeding Research Institute. In this research, traits such as root yield, sugar content, sugar yield, white sugar yield, Na, K, N, alkalinity, molasses sugar, white sugar content, and extraction coefficient of sugar were measured. Data were analyzed using SAS 9.1 software. The analysis of variance on test data and comparison to the middle of the Duncan test was performed at the 5% level. Factor analysis was calculated to identify the main factors using MINITAB software. Cluster analysis of the studied genotypes was obtained after standardizing the data by the Ward method and using Euclidean distance criterion with the help of SPSS software.Results and DiscussionThe results of the combined analysis of variance showed that there was a significant difference between different genotypes of sugar beet at the level of 1% probability for all studied traits except for nitrogen content. The mean comparison showed that the SBSI-15 genotype had the highest root yield (60.66 ton.ha). It should be noted that this genotype in terms of yield index traits did not show significantly different from genotypes F-20739, SBSI-15, SVZA 2019-JD389, SVZA 2019-JD0402, SVZA 2019-JD0400, SVZA 2019-JD0401, and FDIR 19 B 4028. Also, the F-20739 genotype had the highest amounts of sugar content (19.5%), white sugar content (16.3%) and extraction coefficient of sugar (83.2%) and the lowest amount of potassium (4.24
ISSN:2008-1472
2423-3978
DOI:10.22067/jcesc.2022.74787.1138