Sine Entropy of Uncertain Random Variables

Entropy is usually used to measure the uncertainty of uncertain random variables. It has been defined by logarithmic entropy with chance theory. However, this logarithmic entropy sometimes fails to measure the uncertainty of some uncertain random variables. In order to solve this problem, this paper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2021-11, Vol.13 (11), p.2023
Hauptverfasser: Shi, Gang, Zhuang, Rujun, Sheng, Yuhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Entropy is usually used to measure the uncertainty of uncertain random variables. It has been defined by logarithmic entropy with chance theory. However, this logarithmic entropy sometimes fails to measure the uncertainty of some uncertain random variables. In order to solve this problem, this paper proposes two types of entropy for uncertain random variables: sine entropy and partial sine entropy, and studies some of their properties. Some important properties of sine entropy and partial sine entropy, such as translation invariance and positive linearity, are obtained. In addition, the calculation formulas of sine entropy and partial sine entropy of uncertain random variables are given.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym13112023