Photoactivated nanomotors via aggregation induced emission for enhanced phototherapy

Aggregation-induced emission (AIE) has, since its discovery, become a valuable tool in the field of nanoscience. AIEgenic molecules, which display highly stable fluorescence in an assembled state, have applications in various biomedical fields—including photodynamic therapy. Engineering structure-in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-04, Vol.12 (1), p.2077-10, Article 2077
Hauptverfasser: Cao, Shoupeng, Shao, Jingxin, Wu, Hanglong, Song, Shidong, De Martino, Maria Teresa, Pijpers, Imke A. B., Friedrich, Heiner, Abdelmohsen, Loai K. E. A., Williams, David S., van Hest, Jan C. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aggregation-induced emission (AIE) has, since its discovery, become a valuable tool in the field of nanoscience. AIEgenic molecules, which display highly stable fluorescence in an assembled state, have applications in various biomedical fields—including photodynamic therapy. Engineering structure-inherent, AIEgenic nanomaterials with motile properties is, however, still an unexplored frontier in the evolution of this potent technology. Here, we present phototactic/phototherapeutic nanomotors where biodegradable block copolymers decorated with AIE motifs can transduce radiant energy into motion and enhance thermophoretic motility driven by an asymmetric Au nanoshell. The hybrid nanomotors can harness two photon near-infrared radiation, triggering autonomous propulsion and simultaneous phototherapeutic generation of reactive oxygen species. The potential of these nanomotors to be applied in photodynamic therapy is demonstrated in vitro, where near-infrared light directed motion and reactive oxygen species induction synergistically enhance efficacy with a high level of spatial control. Induced motion has emerged as a method to increase the efficacy of delivery and therapeutic outcomes using nanomaterials. Here, the authors report on a Janus gold shell polymersome with aggregation-induced emission molecules for phototactic and photodynamic therapy applications.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-22279-w