Deep learning-based segmentation of subcellular organelles in high-resolution phase-contrast images

Although quantitative analysis of biological images demands precise extraction of specific organelles or cells, it remains challenging in broad-field grayscale images, where traditional thresholding methods have been hampered due to complex image features. Nevertheless, rapidly growing artificial in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell Structure and Function 2024, Vol.49(2), pp.57-65
Hauptverfasser: Shimasaki, Kentaro, Okemoto-Nakamura, Yuko, Saito, Kyoko, Fukasawa, Masayoshi, Katoh, Kaoru, Hanada, Kentaro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although quantitative analysis of biological images demands precise extraction of specific organelles or cells, it remains challenging in broad-field grayscale images, where traditional thresholding methods have been hampered due to complex image features. Nevertheless, rapidly growing artificial intelligence technology is overcoming obstacles. We previously reported the fine-tuned apodized phase-contrast microscopy system to capture high-resolution, label-free images of organelle dynamics in unstained living cells (Shimasaki, K. et al. (2024). Cell Struct. Funct., 49: 21–29). We here showed machine learning-based segmentation models for subcellular targeted objects in phase-contrast images using fluorescent markers as origins of ground truth masks. This method enables accurate segmentation of organelles in high-resolution phase-contrast images, providing a practical framework for studying cellular dynamics in unstained living cells.Key words: label-free imaging, organelle dynamics, apodized phase contrast, deep learning-based segmentation
ISSN:0386-7196
1347-3700
1347-3700
DOI:10.1247/csf.24036