Projected drought conditions by CMIP6 multimodel ensemble over Southeast Asia

Southeast Asia (SEA) is vulnerable to climate extremes due to its large and growing population, long coastlines with low-lying areas, reliance on agricultural sector developments. Here, the latest Coupled Model Intercomparison Project Phase 6 (CMIP6) was employed to examine future climate change and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of water and climate change 2021-11, Vol.12 (7), p.3330-3354
Hauptverfasser: Supharatid, S., Nafung, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Southeast Asia (SEA) is vulnerable to climate extremes due to its large and growing population, long coastlines with low-lying areas, reliance on agricultural sector developments. Here, the latest Coupled Model Intercomparison Project Phase 6 (CMIP6) was employed to examine future climate change and drought in this region under two SSP–RCP (shared socioeconomic pathway–representative concentration pathway) scenarios (SSP2-4.5 and SSP5-8.5). The CMIP6 multimodel ensemble mean projects a warming (wetting) of 1.99–4.29 °C (9.62–18.43%) in the 21st century. The Standardized Precipitation Evapotranspiration Index at 12-month time scales (SPEI-12) displays moderate-to-severe dry conditions over all countries during the near-future period, then the wet condition is projected from mid-future to far-future periods. The projected drought characteristics show relatively longer durations, higher peak intensities, and more severities under SSP5-8.5, while the higher number of events are projected under SSP2-4.5. Overall, the SPEI-12 over SEA displays significant regional differences with decreasing dryness trend toward the 21st century. All these findings have important implications for policy intervention to water resource management under a changing climate over SEA.
ISSN:2040-2244
2408-9354
DOI:10.2166/wcc.2021.308