Analysis of Energy-Saving Transport Conditions of Light-Particle Slurry
Ice slurry, as a new environmentally friendly cold storage medium, is widely used in the field of cold storage and air conditioning because of its excellent flow and heat transfer characteristics. Based on experimental data of slurry flow, the rheological properties of light-particle slurries compos...
Gespeichert in:
Veröffentlicht in: | Buildings (Basel) 2023-04, Vol.13 (4), p.894 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ice slurry, as a new environmentally friendly cold storage medium, is widely used in the field of cold storage and air conditioning because of its excellent flow and heat transfer characteristics. Based on experimental data of slurry flow, the rheological properties of light-particle slurries composed of polyethylene particles and water were analyzed using the response surface method. Using the yield stress and viscosity as the responses and considering three key influencing factors (solid-phase content, particle size, and pipe diameter) simultaneously, the order and law influencing the rheological factors were found. This was a new attempt to find energy-saving conditions for light slurry particle transport using the response surface method. The results showed that the response surface method can select the minimum working condition of mixed slurry viscosity and yield stress to ensure the safe and energy-saving transport of slurry. Moreover, it was also found that the main factor influencing slurry yield stress is the pipe diameter, and the yield stress increases with increasing pipe diameter. The main factor influencing slurry viscosity is particle size, and the viscosity increases with increasing particle size. |
---|---|
ISSN: | 2075-5309 2075-5309 |
DOI: | 10.3390/buildings13040894 |