Influence of Dynamic and Thermal Effects of Asian Topography on Tropical Cyclone Activity as Simulated in a Global Climate Model
Asian topography plays a significant role in regional and global weather and climate change. Based on the dataset of climate system model named CAS FGOALS-f3 participated in Global monsoons Model Inter-comparison (GMMIP), the MIP endorsement of Coupled Model Intercomparison Project Phase 6 (CMIP6),...
Gespeichert in:
Veröffentlicht in: | Atmosphere 2023-05, Vol.14 (5), p.905 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Asian topography plays a significant role in regional and global weather and climate change. Based on the dataset of climate system model named CAS FGOALS-f3 participated in Global monsoons Model Inter-comparison (GMMIP), the MIP endorsement of Coupled Model Intercomparison Project Phase 6 (CMIP6), the role of Asian topography to the formation and movement of tropical cyclones (TCs) are discussed in this study. This study provides the first comparative analysis of the dynamic and thermal effects of Asian topography on the regional and global activity of TCs. The results indicate that the Asian topography promotes the generation and development of TCs, especially in the Northwest Pacific (WNP). The contribution of the Asian topography to the number of TCs reached about 50% in WNP. It is worth noting that there are still positive biases of TC track density in the experiment named “AMIP-NS,” which means the thermal effect of Asian topography is also essential for TC formation and development in WNP, which has not received much attention before. Besides, the possible reasons for the modulation of TC activity are given from two aspects: (1) The existence of Asian topography has changed the large-scale factors related to TC activities such as warm core, sea-level pressure, genesis potential index (GPI), which are beneficial to the generation and movement of TC. (2) Asian topography promotes the spread of Madden–Julian oscillation (MJO), which is also beneficial to the generation and movement of TC. It is worthwhile to investigate further the mechanisms by which Asian topography affects the activity of TCs. |
---|---|
ISSN: | 2073-4433 2073-4433 |
DOI: | 10.3390/atmos14050905 |