Fischer matrices of Dempwolff group $2^{5}{^{cdot}}GL(5,2)
In cite{Demp2} Dempwolff proved the existence of a group of theform $2^{5}{^{cdot}}GL(5,2)$ (a non split extension of theelementary abelian group $2^{5}$ by the general linear group$GL(5,2)$). This group is the second largest maximal subgroup of thesporadic Thompson simple group $mathrm{Th}.$ In thi...
Gespeichert in:
Veröffentlicht in: | International journal of group theory 2012-12, Vol.1 (4), p.43-63 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In cite{Demp2} Dempwolff proved the existence of a group of theform $2^{5}{^{cdot}}GL(5,2)$ (a non split extension of theelementary abelian group $2^{5}$ by the general linear group$GL(5,2)$). This group is the second largest maximal subgroup of thesporadic Thompson simple group $mathrm{Th}.$ In this paper wecalculate the Fischer matrices of Dempwolff group $overline{G} =2^{5}{^{cdot}}GL(5,2).$ The theory of projective characters isinvolved and we have computed the Schur multiplier together with aprojective character table of an inertia factor group. The fullcharacter table of $overline{G}$ is then can be calculated easily. |
---|---|
ISSN: | 2251-7650 2251-7669 |