A Simplified Network Model for Travel Time Reliability Analysis in a Road Network

This paper proposes a simplified network model which analyzes travel time reliability in a road network. A risk-averse driver is assumed in the simplified model. The risk-averse driver chooses a path by taking into account both a path travel time variance and a mean path travel time. The uncertainty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced transportation 2017-01, Vol.2017 (2017), p.1-17
Hauptverfasser: Uchida, Kenetsu, Kato, Teppei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a simplified network model which analyzes travel time reliability in a road network. A risk-averse driver is assumed in the simplified model. The risk-averse driver chooses a path by taking into account both a path travel time variance and a mean path travel time. The uncertainty addressed in this model is that of traffic flows (i.e., stochastic demand flows). In the simplified network model, the path travel time variance is not calculated by considering all travel time covariance between two links in the network. The path travel time variance is calculated by considering all travel time covariance between two adjacent links in the network. Numerical experiments are carried out to illustrate the applicability and validity of the proposed model. The experiments introduce the path choice behavior of a risk-neutral driver and several types of risk-averse drivers. It is shown that the mean link flows calculated by introducing the risk-neutral driver differ as a whole from those calculated by introducing several types of risk-averse drivers. It is also shown that the mean link flows calculated by the simplified network model are almost the same as the flows calculated by using the exact path travel time variance.
ISSN:0197-6729
2042-3195
DOI:10.1155/2017/4941535