Regression Tree CNN for Estimation of Ground Sampling Distance Based on Floating-Point Representation
The estimation of ground sampling distance (GSD) from a remote sensing image enables measurement of the size of an object as well as more accurate segmentation in the image. In this paper, we propose a regression tree convolutional neural network (CNN) for estimating the value of GSD from an input i...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2019-10, Vol.11 (19), p.2276 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The estimation of ground sampling distance (GSD) from a remote sensing image enables measurement of the size of an object as well as more accurate segmentation in the image. In this paper, we propose a regression tree convolutional neural network (CNN) for estimating the value of GSD from an input image. The proposed regression tree CNN consists of a feature extraction CNN and a binomial tree layer. The proposed network first extracts features from an input image. Based on the extracted features, it predicts the GSD value that is represented by the floating-point number with the exponent and its mantissa. They are computed by coarse scale classification and finer scale regression, respectively, resulting in improved results. Experimental results with a Google Earth aerial image dataset and a mixed dataset consisting of eight remote sensing image public datasets with different GSDs show that the proposed network reduces the GSD prediction error rate by 25% compared to a baseline network that directly estimates the GSD. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs11192276 |