Computer-assisted approaches for measuring, segmenting, and analyzing functional upper extremity movement: a narrative review of the current state, limitations, and future directions
The analysis of functional upper extremity (UE) movement kinematics has implications across domains such as rehabilitation and evaluating job-related skills. Using movement kinematics to quantify movement quality and skill is a promising area of research but is currently not being used widely due to...
Gespeichert in:
Veröffentlicht in: | Frontiers in rehabilitation sciences 2023-04, Vol.4, p.1130847-1130847 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The analysis of functional upper extremity (UE) movement kinematics has implications across domains such as rehabilitation and evaluating job-related skills. Using movement kinematics to quantify movement quality and skill is a promising area of research but is currently not being used widely due to issues associated with cost and the need for further methodological validation. Recent developments by computationally-oriented research communities have resulted in potentially useful methods for evaluating UE function that may make kinematic analyses easier to perform, generally more accessible, and provide more objective information about movement quality, the importance of which has been highlighted during the COVID-19 pandemic. This narrative review provides an interdisciplinary perspective on the current state of computer-assisted methods for analyzing UE kinematics with a specific focus on how to make kinematic analyses more accessible to domain experts. We find that a variety of methods exist to more easily measure and segment functional UE movement, with a subset of those methods being validated for specific applications. Future directions include developing more robust methods for measurement and segmentation, validating these methods in conjunction with proposed kinematic outcome measures, and studying how to integrate kinematic analyses into domain expert workflows in a way that improves outcomes. |
---|---|
ISSN: | 2673-6861 2673-6861 |
DOI: | 10.3389/fresc.2023.1130847 |