Modification of Nafion Membranes by IL-Cation Exchange: Chemical Surface, Electrical and Interfacial Study

Bulk and surface changes in two proton-exchange membranes (Nafion-112 and Nafion-117) as a result of the incorporation of the IL-cation n-dodecyltriethylammonium (or DTA+) by a proton/cation exchange mechanism after immersion in a DTA+ aqueous solution were analysed by impedance spectroscopy (IS), d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Electrochemistry 2012-01, Vol.2012 (2012), p.180-188
Hauptverfasser: Romero, V., Martínez de Yuso, M. V., Arango, A., Rodríguez-Castellón, Enrique, Benavente, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bulk and surface changes in two proton-exchange membranes (Nafion-112 and Nafion-117) as a result of the incorporation of the IL-cation n-dodecyltriethylammonium (or DTA+) by a proton/cation exchange mechanism after immersion in a DTA+ aqueous solution were analysed by impedance spectroscopy (IS), differential scanning calorimetry (DSC), X-ray photoelectron spectroscopy (XPS), and contact angle measurements performed with dry samples of the original Nafion and Nafion-DTA+-modified membranes. Only slight differences were obtained in the incorporation degree and surface chemical nature depending on the membrane thickness, and DTA+ incorporation modified both the hydrophobic character of the original Nafion membranes and their thermal stability. Electrical characterization of the dry Nafion-112 membrane was performed by impedance spectroscopy while different HCl solutions were used for membrane potential measurements. A study of time evolution of the impedance curves measured in the system “IL aqueous solution/Nafion-112 membrane/IL aqueous solution” was also performed. This study allows us monitoring the electrical changes associated to the IL-cation incorporation in both the membrane and the membrane/IL solution interface, and it provides supplementary information on the characteristic of the Nafion/DTA+ hybrid material. Moreover, the results also show the significant effect of water on the electrical resistance of the Nafion-112/IL-cation-modified membrane.
ISSN:2090-3529
2090-3537
DOI:10.1155/2012/349435