An Explainable Deep Learning-Enhanced IoMT Model for Effective Monitoring and Reduction of Maternal Mortality Risks

Maternal mortality (MM) is considered one of the major worldwide concerns. Despite the advances of artificial intelligence (AI) in healthcare, the lack of transparency in AI models leads to reluctance to adopt them. Employing explainable artificial intelligence (XAI) thus helps improve the transpare...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Future internet 2024-11, Vol.16 (11), p.411
Hauptverfasser: Saleh, Sherine Nagy, Elagamy, Mazen Nabil, Saleh, Yasmine N. M, Osman, Radwa Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Maternal mortality (MM) is considered one of the major worldwide concerns. Despite the advances of artificial intelligence (AI) in healthcare, the lack of transparency in AI models leads to reluctance to adopt them. Employing explainable artificial intelligence (XAI) thus helps improve the transparency and effectiveness of AI-driven healthcare solutions. Accordingly, this article proposes a complete framework integrating an Internet of Medical Things (IoMT) architecture with an XAI-based deep learning model. The IoMT system continuously monitors pregnant women’s vital signs, while the XAI model analyzes the collected data to identify risk factors and generate actionable insights. Additionally, an efficient IoMT transmission model is developed to ensure reliable data transfer with the best-required system quality of service (QoS). Further analytics are performed on the data collected from different regions in a country to address high-risk cities. The experiments demonstrate the effectiveness of the proposed framework by achieving an accuracy of 80% for patients and 92.6% for regional risk prediction and providing interpretable explanations. The XAI-generated insights empower healthcare providers to make informed decisions and implement timely interventions. Furthermore, the IoMT transmission model ensures efficient and secure data transfer.
ISSN:1999-5903
1999-5903
DOI:10.3390/fi16110411