Use of a Telemedicine Risk Assessment Tool to Predict the Risk of Hospitalization of 496 Outpatients With COVID-19: Retrospective Analysis

Risk assessment of patients with acute COVID-19 in a telemedicine context is not well described. In settings of large numbers of patients, a risk assessment tool may guide resource allocation not only for patient care but also for maximum health care and public health benefit. The goal of this study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JMIR public health and surveillance 2021-04, Vol.7 (4), p.e25075-e25075
Hauptverfasser: O'Keefe, James B, Tong, Elizabeth J, Taylor, Jr, Thomas H, O'Keefe, Ghazala A Datoo, Tong, David C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Risk assessment of patients with acute COVID-19 in a telemedicine context is not well described. In settings of large numbers of patients, a risk assessment tool may guide resource allocation not only for patient care but also for maximum health care and public health benefit. The goal of this study was to determine whether a COVID-19 telemedicine risk assessment tool accurately predicts hospitalizations. We conducted a retrospective study of a COVID-19 telemedicine home monitoring program serving health care workers and the community in Atlanta, Georgia, with enrollment from March 24 to May 26, 2020; the final call range was from March 27 to June 19, 2020. All patients were assessed by medical providers using an institutional COVID-19 risk assessment tool designating patients as Tier 1 (low risk for hospitalization), Tier 2 (intermediate risk for hospitalization), or Tier 3 (high risk for hospitalization). Patients were followed with regular telephone calls to an endpoint of improvement or hospitalization. Using survival analysis by Cox regression with days to hospitalization as the metric, we analyzed the performance of the risk tiers and explored individual patient factors associated with risk of hospitalization. Providers using the risk assessment rubric assigned 496 outpatients to tiers: Tier 1, 237 out of 496 (47.8%); Tier 2, 185 out of 496 (37.3%); and Tier 3, 74 out of 496 (14.9%). Subsequent hospitalizations numbered 3 out of 237 (1.3%) for Tier 1, 15 out of 185 (8.1%) for Tier 2, and 17 out of 74 (23%) for Tier 3. From a Cox regression model with age of 60 years or older, gender, and reported obesity as covariates, the adjusted hazard ratios for hospitalization using Tier 1 as reference were 3.74 (95% CI 1.06-13.27; P=.04) for Tier 2 and 10.87 (95% CI 3.09-38.27; P
ISSN:2369-2960
2369-2960
DOI:10.2196/25075