Esterification Optimization of Crude African Palm Olein Using Response Surface Methodology and Heterogeneous Acid Catalysis

In this work, the effect of zeolite montmorillonite KSF in the esterification of free fatty acids (FFAs) of crude African palm olein (Eleaias guinnesis Jacq) was studied. To optimize the esterification of FFAs of the crude African palm olein (CAPO), the response surface methodology (RSM) that was ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2018-01, Vol.11 (1), p.157
Hauptverfasser: Anguebes-Franseschi, Francisco, Abatal, Mohamed, Bassam, Ali, Escalante Soberanis, Mauricio, May Tzuc, Oscar, Bucio-Galindo, Lauro, Cordova Quiroz, Atl, Aguilar Ucan, Claudia, Ramirez-Elias, Miguel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, the effect of zeolite montmorillonite KSF in the esterification of free fatty acids (FFAs) of crude African palm olein (Eleaias guinnesis Jacq) was studied. To optimize the esterification of FFAs of the crude African palm olein (CAPO), the response surface methodology (RSM) that was based on a central composite rotatable design (CCRD) was used. The effects of three parameters were investigated: (a) catalyst loading (2.6–9.4 wt %), (b) reaction temperature (133.2–166.2 °C), and (c) reaction time (0.32–3.68 h). The Analysis of variance (ANOVA) indicated that linear terms of catalyst loading (X1), reaction temperature (X2), the quadratic term of catalyst loading ( X 1 2 ), temperature reaction ( X 2 2 ), reaction time ( X 3 2 ), the interaction catalyst loading with reaction time ( X 1 * X3), and the interaction reaction temperature with reaction time ( X 2 * X3) have a significant effect (p < 0.05 with a 95% confidence level) on Fatty Methyl Ester (FAME) yield. The result indicated that the optimum reaction conditions to esterification of FFAs were: catalyst loading 9.4 wt %, reaction temperature 155.5 °C, and 3.3 h for reaction time, respectively. Under these conditions, the numerical estimation of FAME yield was 91.81 wt %. This result was experimentally validated obtaining a difference of 1.7% FAME yield, with respect to simulated values.
ISSN:1996-1073
1996-1073
DOI:10.3390/en11010157