Detection of tuberculosis using cough audio analysis: a deep learning approach with capsule networks
Purpose Tuberculosis (TB) is a widespread infectious disease that requires early detection for effective treatment and control. This study aims to improve TB detection using cough audio analysis, comparing the performance of capsule networks to other deep learning models. Methods We used cough audio...
Gespeichert in:
Veröffentlicht in: | Discover Artificial Intelligence 2024-12, Vol.4 (1), p.77-11, Article 77 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
Tuberculosis (TB) is a widespread infectious disease that requires early detection for effective treatment and control. This study aims to improve TB detection using cough audio analysis, comparing the performance of capsule networks to other deep learning models.
Methods
We used cough audio recordings from 1105 individuals with a new or worsening cough for at least two weeks, totaling 9772 recordings. These recordings were processed into spectral images, and HOG features were extracted. Various models, including Capsule Networks + FCNN, CNN, VGG16, and ResNet50 were trained and evaluated.
Results
Capsule Networks + FCNN achieved the best performance with an accuracy of 0.97, sensitivity of 0.98, specificity of 0.96, F1 score of 0.97, and precision of 0.97, outperforming other models. This attribute is due to the model’s ability to learn complex features from spectral images.
Conclusions
This study concludes that Capsule Networks are more effective than typical CNN-based models in diagnosing TB from cough audio. This suggests that advanced deep learning frameworks could significantly enhance TB screening accuracy, especially in resource-limited areas. |
---|---|
ISSN: | 2731-0809 2731-0809 |
DOI: | 10.1007/s44163-024-00179-4 |