Novel versions of Hölder's-Like and related inequalities with newly defined LP space, and their applications over fuzzy domain
It is widely recognized that fuzzy number theory relies on the characteristic function. However, within the fuzzy realm, the characteristic function transforms into a membership function contingent upon the interval [0,1]. This implies that real numbers and intervals represent exceptional cases of f...
Gespeichert in:
Veröffentlicht in: | Heliyon 2024-12, Vol.10 (23), p.e40664, Article e40664 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is widely recognized that fuzzy number theory relies on the characteristic function. However, within the fuzzy realm, the characteristic function transforms into a membership function contingent upon the interval [0,1]. This implies that real numbers and intervals represent exceptional cases of fuzzy numbers. By considering this approach, this paper introduces a new LP space and novel refinements for integral variations of Hölder's inequality which is known as Hölder's-like inequality over fuzzy domain. Numerous prevailing inequalities associated with Hölder's-like inequality can be enhanced through the newly acquired inequalities, as demonstrated through an application. By using newly defined special means, some new versions of integral inequalities have obtained where differentiable mappings are real-valued convex-like (or convex fuzzy) mappings Lastly, nontrivial numerical examples are also included to validate the accuracy of the presented inequalities as they vary with the parameter ꙍ. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2024.e40664 |