Using a Deep Quantum Neural Network to Enhance the Fidelity of Quantum Convolutional Codes

The fidelity of quantum states is an important concept in quantum information. Improving quantum fidelity is very important for both quantum communication and quantum computation. In this paper, we use a quantum neural network (QNN) to enhance the fidelity of [6, 2, 2] quantum convolutional codes. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-06, Vol.12 (11), p.5662
Hauptverfasser: Xiao, Hanwei, Chen, Xiaoguang, Xu, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fidelity of quantum states is an important concept in quantum information. Improving quantum fidelity is very important for both quantum communication and quantum computation. In this paper, we use a quantum neural network (QNN) to enhance the fidelity of [6, 2, 2] quantum convolutional codes. Towards the circuit of quantum convolutional codes, the target quantum state |0⟩ or |1⟩ is turned into entangled quantum states, which can defend against quantum noise more effectively. As the quantum neural network works better for quantum states with low dimension, we divide the quantum circuits into two parts. Then we apply the quantum neural network to each part of the circuit. The results of the simulation show that the network performs well in enhancing the fidelity of the quantum states. Through the quantum neural network, the fidelity of the first part is enhanced from 95.2% to 99.99%, and the fidelity of the second part is enhanced from 93.88% to 94.57%.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12115662