User-friendly optimization approach of fed-batch fermentation conditions for the production of iturin A using artificial neural networks and support vector machine

Background: In the field of microbial fermentation technology, how to optimize the fermentation conditions is of great crucial for practical applications. Here, we use artificial neural networks (ANNs) and support vector machine (SVM) to offer a series of effective optimization methods for the produ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic Journal of Biotechnology 2015-07, Vol.18 (4), p.273-280
Hauptverfasser: Chen, Fudi, Li, Hao, Xu, Zhihan, Hou, Shixia, Yang, Dazuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: In the field of microbial fermentation technology, how to optimize the fermentation conditions is of great crucial for practical applications. Here, we use artificial neural networks (ANNs) and support vector machine (SVM) to offer a series of effective optimization methods for the production of iturin A. The concentration levels of asparagine (Asn), glutamic acid (Glu) and proline (Pro) (mg/L) were set as independent variables, while the iturin A titer (U/mL) was set as dependent variable. General regression neural network (GRNN), multilayer feed-forward neural networks (MLFNs) and the SVM were developed. Comparisons were made among different ANNs and the SVM. Results: The GRNN has the lowest RMS error (457.88) and the shortest training time (1 s), with a steady fluctuation during repeated experiments, whereas the MLFNs have comparatively higher RMS errors and longer training times, which have a significant fluctuation with the change of nodes. In terms of the SVM, it also has a relatively low RMS error (466.13), with a short training time (1 s). Conclusion: According to the modeling results, the GRNN is considered as the most suitable ANN model for the design of the fed-batch fermentation conditions for the production of iturin A because of its high robustness and precision, and the SVM is also considered as a very suitable alternative model. Under the tolerance of 30%, the prediction accuracies of the GRNN and SVM are both 100% respectively in repeated experiments.
ISSN:0717-3458
0717-3458
DOI:10.1016/j.ejbt.2015.05.001