Damping of the Woodwind Instrument Reed Material Arundo donax L

The viscoelastic properties (E', G', tanΦ, δ) of Arundo donax (AD) and a polypropylene-beech fiber composite (PPC) were measured from RT to 580K for various frequencies and strains. E' of AD varies between 5250-6250MPa depending on ageing at RT while E'(RT)=2250MPa of PPC is sign...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research (São Carlos, São Paulo, Brazil) São Paulo, Brazil), 2018-01, Vol.21 (suppl 2), p.1
Hauptverfasser: Weidenfeller, Bernd, Lambri, Osvaldo Agustín, Bonifacich, Federico Guillermo, Arlic, Uwe, Gargicevich, Damian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The viscoelastic properties (E', G', tanΦ, δ) of Arundo donax (AD) and a polypropylene-beech fiber composite (PPC) were measured from RT to 580K for various frequencies and strains. E' of AD varies between 5250-6250MPa depending on ageing at RT while E'(RT)=2250MPa of PPC is signifcantly lower. E' of the AD is higher than E' of PPC in the whole investigated temperature range with the exception of AD after a heat treatment up to 575K. Damping spectra exhibit peaks around 340K (Q=234kJ/mol) and 415K for the PPC related to relaxations in the crystalline part of polypropylene and the relaxation at melting temperature. For AD damping peaks were found at 350K (Q=320kJ/ mol) related to the glass-rubber transition of lignin, at 420K due to a reorganization in the amorphous phase of lignin, at 480K related to micro-Brownian motions in the non-crystalline region of cell-wall polymers and reduction of the crystallinity of cellulose, and at 570K due to the polymeric compounds of wood and/or a decomposition of lignin. The course of E' and tanΦ of AD and PPC is comparable from 20-200Hz, whereas tanΦ of AD is lower than tanΦ of PPC while E' of AD is higher than E' of PPC.
ISSN:1516-1439
1980-5373
1980-5373
DOI:10.1590/1980-5373-mr-2017-0795