Adhesion dynamics under time-varying deposition: A study on robotic assisted extrusion
Recent advances in robotic assisted-additive manufacturing (RA-AM) have enabled rapid material extrusion-based processing with comprehensive data collection. The following study investigates the adhesion dynamics of the initial printed layer across parameters such as surface energies, stand-off heig...
Gespeichert in:
Veröffentlicht in: | Advances in industrial and manufacturing engineering 2022-11, Vol.5, p.100101, Article 100101 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent advances in robotic assisted-additive manufacturing (RA-AM) have enabled rapid material extrusion-based processing with comprehensive data collection. The following study investigates the adhesion dynamics of the initial printed layer across parameters such as surface energies, stand-off heights, and extrusion speeds of up to 100 mm/s, using an applied in-situ thermal analysis technique. Observations indicate that the characteristic length parameter, Lc < 0.05 mm, is adequate in anchoring the thermal melt, which adheres to the substrate when the nozzle proximity to the surface increases. Up to 100% molten area is contacting the surface prior to translation, and a final eccentricity over 0.85 has been observed. Through an analysis of variance, operational parameters of lower nozzle heights, printing speeds, and higher surface energy were statistically significant. The resultant in-situ characterization-driven data, was used to train a convolutional neural network (CNN). The model tested at an accuracy of 90.9%, and was able to distinguish between failed prints and initially adhered structures. |
---|---|
ISSN: | 2666-9129 2666-9129 |
DOI: | 10.1016/j.aime.2022.100101 |