Using Gaussian Process Annealing Particle Filter for 3D Human Tracking

We present an approach for human body parts tracking in 3D with prelearned motion models using multiple cameras. Gaussian process annealing particle filter is proposed for tracking in order to reduce the dimensionality of the problem and to increase the tracker's stability and robustness. Compa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EURASIP journal on advances in signal processing 2008-01, Vol.2008 (1), Article 592081
Hauptverfasser: Raskin, Leonid, Rivlin, Ehud, Rudzsky, Michael
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an approach for human body parts tracking in 3D with prelearned motion models using multiple cameras. Gaussian process annealing particle filter is proposed for tracking in order to reduce the dimensionality of the problem and to increase the tracker's stability and robustness. Comparing with a regular annealed particle filter-based tracker, we show that our algorithm can track better for low frame rate videos. We also show that our algorithm is capable of recovering after a temporal target loss.
ISSN:1687-6180
1687-6172
1687-6180
DOI:10.1155/2008/592081