Novel Venetin-1 nanoparticle from earthworm coelomic fluid as a promising agent for the treatment of non-small cell lung cancer

The present research shows the antitumor activity of a protein-polysaccharide complex Venetin-1 obtained from the coelomic fluid of Dendrobaena veneta earthworms against A549 cancer cells. The investigations are a continuation of experiments on the antitumor activity of coelomic fluid obtained from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2022-11, Vol.12 (1), p.18497-21, Article 18497
Hauptverfasser: Rybicka, Magda, Czaplewska, Paulina, Rzymowska, Jolanta, Sofińska-Chmiel, Weronika, Wójcik-Mieszawska, Sylwia, Lewtak, Kinga, Węgrzyn, Katarzyna, Jurczak, Przemysław, Szpiech, Agata, Nowak, Jakub, Musiał, Natalia, Fiołka, Marta J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present research shows the antitumor activity of a protein-polysaccharide complex Venetin-1 obtained from the coelomic fluid of Dendrobaena veneta earthworms against A549 cancer cells. The investigations are a continuation of experiments on the antitumor activity of coelomic fluid obtained from this species. The Venetin-1 nanoparticle was obtained after thermal treatment of the coelomic fluid, separation from coelomocytes, filtration, and lyophilization. The preparation showed a selective effect on cancer cells, whereas normal cells were unaffected. Venetin-1 was effective against the lung cancer cells at doses of 31.3 and 62.5 µg/ml, and the results were imaged using light microscopy and scanning electron microscopy (SEM). The cells died mainly via the apoptosis pathway. Necrotic cells appeared sporadically in the microscopic view. SEM imaging revealed complete destruction of the A549 cells after the incubation with Venetin-1. The atomic force microscopy (AFM) analyses showed changes in the topography, peak force error images, and Young’s modulus (elasticity) of the A549 cells after the incubation with Venetin-1. The transmission electron cryomicroscopy (Cryo-TEM) analysis indicated a polymeric nature of the analyzed preparation. The samples of Venetin-1 showed a very homogeneous size profile with the microparticle size of approximately 58.23 nm. A significant decrease in Venetin-1 binding to sphingomyelin was observed. Venetin-1 lost its pore-forming activity or deactivation of the pore-forming activity occurred. This confirms the absence of hemolytic capacity of Venetin-1 towards red blood cells. The conducted analyses show the suitability of the obtained complex for biomedical research. The next step will consist in analyses of the effect of Venetin-1 on the immune system in mice.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-21665-8