Peroxisome proliferator-activated receptor-α accelerates α-chlorofatty acid catabolism

α-Chlorofatty aldehydes are generated from myeloperoxidase-derived HOCl targeting plasmalogens, and are subsequently oxidized to α-chlorofatty acids (α-ClFAs). The catabolic pathway for α-ClFA is initiated by ω-oxidation. Here, we examine PPAR-α activation as a mechanism to increase α-ClFA catabolis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lipid research 2017-02, Vol.58 (2), p.317-324
Hauptverfasser: Palladino, ElisaN.D., Wang, Wen-yi, Albert, Carolyn J., Langhi, Cédric, Baldán, Ángel, Ford, David A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:α-Chlorofatty aldehydes are generated from myeloperoxidase-derived HOCl targeting plasmalogens, and are subsequently oxidized to α-chlorofatty acids (α-ClFAs). The catabolic pathway for α-ClFA is initiated by ω-oxidation. Here, we examine PPAR-α activation as a mechanism to increase α-ClFA catabolism. Pretreating both HepG2 cells and primary mouse hepatocytes with the PPAR-α agonist, pirinixic acid (Wy 14643), increased the production of α-chlorodicarboxylic acids (α-ClDCAs) in cells treated with exogenous α-ClFA. Additionally, α-ClDCA production in Wy 14643-pretreated wild-type mouse hepatocytes was accompanied by a reduction in cellular free α-ClFA. The dependence of PPAR-α-accelerated α-ClFA catabolism was further demonstrated by both impaired metabolism in mouse PPAR-α−/− hepatocytes and decreased clearance of plasma α-ClFA in PPAR-α−/− mice. Furthermore, Wy 14643 treatments decreased plasma 2-chlorohexadecanoic acid levels in wild-type mice. Additional studies showed that α-ClFA increases PPAR-α, PPAR-δ, and PPAR-γ activities, as well as mRNA expression of the PPAR-α target genes, CD36, CPT1a, Cyp4a10, and CIDEC. Collectively, these results indicate that PPAR-α accelerates important pathways for the clearance of α-ClFA, and α-ClFA may, in part, accelerate its catabolism by serving as a ligand for PPAR-α.
ISSN:0022-2275
1539-7262
DOI:10.1194/jlr.M069740