Influence of Remaining Acid Sites of an Amorphous Aluminosilicate on the Oligomerization of n-Butenes after Impregnation with Nickel Ions

Highly linear octene isomers can be produced from n-butene on industrial scale by using Ni-containing aluminosilicates as heterogeneous catalysts. These catalysts can be prepared by impregnating an aluminosilicate with a Ni(II) salt solution. This leads to a competition between acid-catalyzed and ni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2020-12, Vol.10 (12), p.1487
Hauptverfasser: Nadolny, Fabian, Alscher, Felix, Peitz, Stephan, Borovinskaya, Ekaterina, Franke, Robert, Reschetilowski, Wladimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Highly linear octene isomers can be produced from n-butene on industrial scale by using Ni-containing aluminosilicates as heterogeneous catalysts. These catalysts can be prepared by impregnating an aluminosilicate with a Ni(II) salt solution. This leads to a competition between acid-catalyzed and nickel-catalyzed reactions. In this study it is shown that some octene isomers are exclusively formed via an acid-catalyzed mechanism as a result of methyl group migration at the surface of a mesoporous catalyst. Specifically, the isomers 4,4-dimethylhexene (4,4-DMH) and 3-ethyl-2-methylpentene (3E-2MP) exhibit a systematic correlation compared to the amount of 3,4-dimethylhexene (3,4-DMH) formed at acid sites. By analyzing the ratio of 4,4-DMH and/or 3E-2MP to 3,4-DMH in the product spectrum before and after impregnation with a nickel precursor, the extend of acid site covered by nickel ions can be evaluated.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal10121487