Genome-Wide Analysis and Expression Profiling of HD-ZIP III Genes in Three Brassica Species

Class III homeodomain-leucine zipper (HD-ZIP III) genes encode plant-specific transcription factors that play pivotal roles in plant growth and development. There is no systematic report on HD-ZIP III members in Brassica plants and their responses to stress are largely unknown. In this study, a tota...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diversity (Basel) 2021-12, Vol.13 (12), p.684
Hauptverfasser: Wang, Han, Shao, Wenna, Yan, Min, Xu, Ye, Liu, Shaohua, Wang, Renlei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Class III homeodomain-leucine zipper (HD-ZIP III) genes encode plant-specific transcription factors that play pivotal roles in plant growth and development. There is no systematic report on HD-ZIP III members in Brassica plants and their responses to stress are largely unknown. In this study, a total of 10, 9 and 16 HD-ZIP III genes were identified from B. rapa, B. oleracea and B. napus, respectively. The phylogenetic analysis showed that HD-ZIP III proteins were grouped into three clades: PHB/PHV, REV and CNA/HB8. Genes in the same group tended to have similar exon–intron structures. Various phytohormone-responsive elements and stress-responsive elements were detected in the promoter regions of HD-ZIP III genes. Gene expression levels in different tissues, as well as under different stress conditions, were investigated using public transcription profiling data. The HD-ZIP III genes were constitutively expressed among all the tested tissues and were highly accumulated in root and stem. In B. rapa, only one BrREV gene especially responded to heat stress, BrPHB and BrREV members were downregulated upon cold stress and most HD-ZIP III genes exhibited divergent responses to drought stress. In addition, we investigated the genetic variation at known miR165/166 complementary sites of the identified HD-ZIP III genes and found one single nucleotide polymorphism (SNP) in PHB members and two SNPs in REV members, which were further confirmed using Sanger sequencing. Taken together, these results provide information for the genome-wide characterization of HD-ZIP III genes and their stress response diversity in Brassica species.
ISSN:1424-2818
1424-2818
DOI:10.3390/d13120684