Enhanced Performance of Sn@Pt Core-Shell Nanocatalysts Supported on Two Different Carbon Structures for the Hydrogen Oxidation Reaction in Acid Media

Sn@Pt core-shell nanocatalysts, supported on Vulcan XC-72 and home-developed nitrogen-doped graphene (Sn@Pt/C and Sn@Pt/NG, respectively), were evaluated for the hydrogen oxidation reaction (HOR) in acid electrolyte. The nanocatalysts were synthesized by the bromide anion exchange (BAE) method. TEM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemistry 2022-09, Vol.2022, p.1-12
Hauptverfasser: Rodríguez-Varela, F. J., Hernández-Vázquez, G., Dessources, S., Escobar-Morales, B., Kunhiraman, Aruna K., Garcia-Lobato, M. A., Alonso-Lemus, I. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sn@Pt core-shell nanocatalysts, supported on Vulcan XC-72 and home-developed nitrogen-doped graphene (Sn@Pt/C and Sn@Pt/NG, respectively), were evaluated for the hydrogen oxidation reaction (HOR) in acid electrolyte. The nanocatalysts were synthesized by the bromide anion exchange (BAE) method. TEM characterization confirmed the nanosize nature of Sn@Pt/C and Sn@Pt/NG, with an average particle size of 2.1 and 2.3 nm, respectively. Sn@Pt/C delivered a similar mass limiting current density (jl, m) of the HOR compared to Sn@Pt/NG, which was higher than those of Pt/C and Pt/NG (ca. 2 and 2.3-fold increase, respectively). Moreover, the Sn@Pt/C and Sn@Pt/NG core-shell nanocatalysts demonstrated a higher specific activity related to Pt/C and Pt/NG. Mass and specific Tafel slopes further demonstrated the improved catalytic activity of Sn@Pt/C for the HOR, followed by Sn@Pt/NG. The application of the nanocatalysts was proposed for polymer electrolyte membrane fuel cells (PEMFC).
ISSN:2090-9063
2090-9071
DOI:10.1155/2022/2982594