Explainable AI-based suicidal and non-suicidal ideations detection from social media text with enhanced ensemble technique

This research presents a novel framework for distinguishing between actual and non-suicidal ideation in social media interactions using an ensemble technique. The prompt identification of sentiments on social networking platforms is crucial for timely intervention serving as a key tactic in suicide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2025-01, Vol.15 (1), p.1111-19, Article 1111
Hauptverfasser: Alghazzawi, Daniyal, Ullah, Hayat, Tabassum, Naila, Badri, Sahar K., Asghar, Muhammad Zubair
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research presents a novel framework for distinguishing between actual and non-suicidal ideation in social media interactions using an ensemble technique. The prompt identification of sentiments on social networking platforms is crucial for timely intervention serving as a key tactic in suicide prevention efforts. However, conventional AI models often mask their decision-making processes primarily designed for classification purposes. Our methodology, along with an updated ensemble method, bridges the gap between Explainable AI and leverages a variety of machine learning algorithms to improve predictive accuracy. By leveraging Explainable AI’s interpretability to analyze the features, the model elucidates the reasoning behind its classifications leading to a comprehension of hidden patterns associated with suicidal ideations. Our system is compared to cutting-edge methods on several social media datasets using experimental evaluations, demonstrating that it is superior, since it detects suicidal content more accurately than others. Consequently, this study presents a more reliable and interpretable strategy (F1-score for suicidal = 95.5% and Non-Suicidal = 99%), for monitoring and intervening in suicide-related online discussions.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-84275-6