Health Information Seeking From an Intelligent Web-Based Symptom Checker: Cross-sectional Questionnaire Study
The ever-growing amount of health information available on the web is increasing the demand for tools providing personalized and actionable health information. Such tools include symptom checkers that provide users with a potential diagnosis after responding to a set of probes about their symptoms....
Gespeichert in:
Veröffentlicht in: | Journal of medical Internet research 2022-08, Vol.24 (8), p.e36322-e36322 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ever-growing amount of health information available on the web is increasing the demand for tools providing personalized and actionable health information. Such tools include symptom checkers that provide users with a potential diagnosis after responding to a set of probes about their symptoms. Although the potential for their utility is great, little is known about such tools’ actual use and effects. We aimed to understand who uses a web-based artificial intelligence–powered symptom checker and its purposes, how they evaluate the experience of the web-based interview and quality of the information, what they intend to do with the recommendation, and predictors of future use. Cross-sectional survey of web-based health information seekers following the completion of a symptom checker visit (N=2437). Measures of comprehensibility, confidence, usefulness, health-related anxiety, empowerment, and intention to use in the future were assessed. ANOVAs and the Wilcoxon rank sum test examined mean outcome differences in racial, ethnic, and sex groups. The relationship between perceptions of the symptom checker and intention to follow recommended actions was assessed using multilevel logistic regression. Buoy users were well-educated (1384/1704, 81.22% college or higher), primarily White (1227/1693, 72.47%), and female (2069/2437, 84.89%). Most had insurance (1449/1630, 88.89%), a regular health care provider (1307/1709, 76.48%), and reported good health (1000/1703, 58.72%). Three types of symptoms—pain (855/2437, 35.08%), gynecological issues (293/2437, 12.02%), and masses or lumps (204/2437, 8.37%)—accounted for almost half (1352/2437, 55.48%) of site visits. Buoy’s top three primary recommendations split across less-serious triage categories: primary care physician in 2 weeks (754/2141, 35.22%), self-treatment (452/2141, 21.11%), and primary care in 1 to 2 days (373/2141, 17.42%). Common diagnoses were musculoskeletal (303/2437, 12.43%), gynecological (304/2437, 12.47%) and skin conditions (297/2437, 12.19%), and infectious diseases (300/2437, 12.31%). Users generally reported high confidence in Buoy, found it useful and easy to understand, and said that Buoy made them feel less anxious and more empowered to seek medical help. Users for whom Buoy recommended “Waiting/Watching” or “Self-Treatment” had strongest intentions to comply, whereas those advised to seek primary care had weaker intentions. Compared with White users, Latino and Black users had significa |
---|---|
ISSN: | 1438-8871 1439-4456 1438-8871 |
DOI: | 10.2196/36322 |