Direct Growth of Flower-Shaped ZnO Nanostructures on FTO Substrate for Dye-Sensitized Solar Cells

The proposed work reports that ZnO nanoflowers were grown on fluorine-doped tin oxide (FTO) substrates via a solution process at low temperature. The high purity and well-crystalline behavior of ZnO nanoflowers were established by X-ray diffraction. The morphological characteristics of ZnO nanoflowe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystals (Basel) 2019-08, Vol.9 (8), p.405
Hauptverfasser: Umar, Ahmad, Akhtar, Mohammad, Almas, Tubia, Ibrahim, Ahmed, Al-Assiri, Mohammed, Masuda, Yoshitake, Rahman, Qazi, Baskoutas, Sotirios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The proposed work reports that ZnO nanoflowers were grown on fluorine-doped tin oxide (FTO) substrates via a solution process at low temperature. The high purity and well-crystalline behavior of ZnO nanoflowers were established by X-ray diffraction. The morphological characteristics of ZnO nanoflowers were clearly revealed that the grown flower structures were in high density with 3D floral structure comprising of small rods assembled as petals. Using UV absorption and Raman spectroscopy, the optical and structural properties of the ZnO nanoflowers were studied. The photoelectrochemical properties of the ZnO nanoflowers were studied by utilizing as a photoanode for the manufacture of dye-sensitized solar cells (DSSCs). The fabricated DSSC with ZnO nanoflowers photoanode attained reasonable overall conversion efficiency of ~1.40% and a short-circuit current density (JSC) of ~4.22 mA cm−2 with an open circuit voltage (VOC) of 0.615 V and a fill factor (FF) of ~0.54. ZnO nanostructures have given rise to possible utilization as an inexpensive and efficient photoanode materials for DSSCs.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst9080405