Factors Affecting the Quality of Bacterial Genomes Assemblies by Canu after Nanopore Sequencing

Long-read sequencing (LRS), like Oxford Nanopore Technologies, is usually associated with higher error rates compared to previous generations. Factors affecting the assembly quality are the integrity of DNA, the flowcell efficiency, and, not least all, the raw data processing. Among LRS-intended de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-03, Vol.12 (6), p.3110
Hauptverfasser: Schiavone, Antonella, Pugliese, Nicola, Samarelli, Rossella, Cumbo, Cosimo, Minervini, Crescenzio Francesco, Albano, Francesco, Camarda, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Long-read sequencing (LRS), like Oxford Nanopore Technologies, is usually associated with higher error rates compared to previous generations. Factors affecting the assembly quality are the integrity of DNA, the flowcell efficiency, and, not least all, the raw data processing. Among LRS-intended de novo assemblers, Canu is highly flexible, with its dozens of adjustable parameters. Different Canu parameters were compared for assembling reads of Salmonellaenterica ser. Bovismorbificans (genome size of 4.8 Mbp) from three runs on MinION (N50 651, 805, and 5573). Two of them, with low quality and highly fragmented DNA, were not usable alone for assembly, while they were successfully assembled when combining the reads from all experiments. The best results were obtained by modifying Canu parameters related to the error correction, such as corErrorRate (exclusion of overlaps above a set error rate, set up at 0.40), corMhapSensitivity (the coarse sensitivity level, set to “high”), corMinCoverage (set to 0 to correct all reads, regardless the overlaps length), and corOutCoverage (corrects the longest reads up to the imposed coverage, set to 100). This setting produced two contigs corresponding to the complete sequences of the chromosome and a plasmid. The overall results highlight the importance of a tailored bioinformatic analysis.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12063110