Real spectral values coexistence and their effect on the stability of time-delay systems: Vandermonde matrices and exponential decay

This work exploits structural properties of a class of functional Vandermonde matrices to emphasize some qualitative properties of a class of linear autonomous n−th order differential equation with forcing term consisting in the delayed dependent-variable. More precisely, it deals with the stabilizi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comptes rendus. Mathématique 2021-01, Vol.358 (9-10), p.1011-1032
Hauptverfasser: Bedouhene, Fazia, Boussaada, Islam, Niculescu, Silviu-Iulian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work exploits structural properties of a class of functional Vandermonde matrices to emphasize some qualitative properties of a class of linear autonomous n−th order differential equation with forcing term consisting in the delayed dependent-variable. More precisely, it deals with the stabilizing effect of delay parameter coupled with the coexistence of the maximal number of real spectral values. The derived conditions are necessary and sufficient and represent a novelty in the litterature. Under appropriate conditions, such a configuration characterizes the spectral abscissa corresponding to the studied equation. A new stability criterion is proposed. This criterion extends recent results in factorizing quasipolynomial functions. The applicative potential of the proposed method is illustrated through the stabilization of coupled oscillators.
ISSN:1778-3569
1631-073X
1778-3569
DOI:10.5802/crmath.112