Energy-Efficient Edge and Cloud Image Classification with Multi-Reservoir Echo State Network and Data Processing Units

In an era dominated by Internet of Things (IoT) devices, software-as-a-service (SaaS) platforms, and rapid advances in cloud and edge computing, the demand for efficient and lightweight models suitable for resource-constrained devices such as data processing units (DPUs) has surged. Traditional deep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-06, Vol.24 (11), p.3640
Hauptverfasser: López-Ortiz, E J, Perea-Trigo, M, Soria-Morillo, L M, Álvarez-García, J A, Vegas-Olmos, J J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In an era dominated by Internet of Things (IoT) devices, software-as-a-service (SaaS) platforms, and rapid advances in cloud and edge computing, the demand for efficient and lightweight models suitable for resource-constrained devices such as data processing units (DPUs) has surged. Traditional deep learning models, such as convolutional neural networks (CNNs), pose significant computational and memory challenges, limiting their use in resource-constrained environments. Echo State Networks (ESNs), based on reservoir computing principles, offer a promising alternative with reduced computational complexity and shorter training times. This study explores the applicability of ESN-based architectures in image classification and weather forecasting tasks, using benchmarks such as the MNIST, FashionMnist, and CloudCast datasets. Through comprehensive evaluations, the Multi-Reservoir ESN (MRESN) architecture emerges as a standout performer, demonstrating its potential for deployment on DPUs or home stations. In exploiting the dynamic adaptability of MRESN to changing input signals, such as weather forecasts, continuous on-device training becomes feasible, eliminating the need for static pre-trained models. Our results highlight the importance of lightweight models such as MRESN in cloud and edge computing applications where efficiency and sustainability are paramount. This study contributes to the advancement of efficient computing practices by providing novel insights into the performance and versatility of MRESN architectures. By facilitating the adoption of lightweight models in resource-constrained environments, our research provides a viable alternative for improved efficiency and scalability in modern computing paradigms.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24113640