Role of ferroelectric polarization during growth of highly strained ferroelectric materials

In ferroelectric thin films and superlattices, the polarization is intricately linked to crystal structure. Here we show that it can also play an important role in the growth process, influencing growth rates, relaxation mechanisms, electrical properties and domain structures. This is studied by foc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-05, Vol.11 (1), p.2630-2630, Article 2630
Hauptverfasser: Liu, Rui, Ulbrandt, Jeffrey G., Hsing, Hsiang-Chun, Gura, Anna, Bein, Benjamin, Sun, Alec, Pan, Charles, Bertino, Giulia, Lai, Amanda, Cheng, Kaize, Doyle, Eli, Evans-Lutterodt, Kenneth, Headrick, Randall L., Dawber, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In ferroelectric thin films and superlattices, the polarization is intricately linked to crystal structure. Here we show that it can also play an important role in the growth process, influencing growth rates, relaxation mechanisms, electrical properties and domain structures. This is studied by focusing on the properties of BaTiO 3 thin films grown on very thin layers of PbTiO 3 using x-ray diffraction, piezoforce microscopy, electrical characterization and rapid in-situ x-ray diffraction reciprocal space maps during the growth using synchrotron radiation. Using a simple model we show that the changes in growth are driven by the energy cost for the top material to sustain the polarization imposed upon it by the underlying layer, and these effects may be expected to occur in other multilayer systems where polarization is present during growth. This motivates the concept of polarization engineering as a complementary approach to strain engineering. Ferroelectric (FE) materials are used in a wide range of applications, which often requires sizable FE polarization. Here, the authors report a growth procedure to enhance the FE polarization by exploiting the polarization of a FE substrate during growth to obtain higher strains and polarizations in the final material.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-16356-9