Self-Evolving Chebyshev Radial Basis Function Neural Complementary Sliding Mode Control

A novel intelligent complementary sliding mode control (ICSMC) method is proposed for nonlinear systems with unknown uncertainties in this paper. A self-evolving Chebyshev radial basis function neural network (RBFNN) (SECRBFNN) with self-learning parameters and structure is proposed and combined wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2023-07, Vol.11 (14), p.3231
Hauptverfasser: Zhang, Lei, Li, Xiangguo, Fei, Juntao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel intelligent complementary sliding mode control (ICSMC) method is proposed for nonlinear systems with unknown uncertainties in this paper. A self-evolving Chebyshev radial basis function neural network (RBFNN) (SECRBFNN) with self-learning parameters and structure is proposed and combined with complementary sliding mode control (CSMC). CSMC not only has the advantages of the strong robustness of traditional SMC but also has certain advantages in reducing chattering and control accuracy. The SECRBFNN, which combines the advantages of the Chebyshev network (CN) and an RBFNN, is used to estimate unknown uncertainties in nonlinear systems. Meanwhile, a node self-evolution mechanism is proposed to avoid redundancy in the number of neurons. Eventually, the detailed simulation results demonstrate the feasibility and superiority of the proposed method.
ISSN:2227-7390
2227-7390
DOI:10.3390/math11143231