An Empirical Taxonomy of Common Curb Zoning Configurations in Seattle

This work applies an unsupervised clustering algorithm to blockface zoning data to identify typical curb configurations in a city. Data is obtained via the city of Seattle’s (Washington, USA) open data portal. To compare the distribution of blockfaces of varying length, all blockfaces are normalized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Findings (Network Design Lab.Online) 2022-02
Hauptverfasser: Dowling, Chase P., Maxner, Thomas, Ranjbari, Andisheh
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work applies an unsupervised clustering algorithm to blockface zoning data to identify typical curb configurations in a city. Data is obtained via the city of Seattle’s (Washington, USA) open data portal. To compare the distribution of blockfaces of varying length, all blockfaces are normalized where each zone type is presented as a percentage of the total blockface length in an order-preserving format. Common zone sequences are identified via k-modes clustering, where an optimal choice of k is cross-validated, quantifying the number of curb configurations to represent the majority of Seattle’s blockfaces. All documented code and data are open source and available at https://github.com/pnnl/curbclustering.
ISSN:2652-8800
2652-8800
DOI:10.32866/001c.32446