Prediction of Corn Leaf Nitrogen Content in a Tropical Region Using Vis-NIR-SWIR Spectroscopy

Traditional techniques for measuring leaf nitrogen content (LNC) involve slow and laborious processes, and radiometric data have been used to assist in the nutritional analysis of plants. Therefore, this study aimed to evaluate the performance of LNC predictions in corn plants based on laboratory hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AgriEngineering 2024-12, Vol.6 (4), p.4135-4153
Hauptverfasser: Oliveira, Ana Karla da Silva, Rizzo, Rodnei, Silva, Carlos Augusto Alves Cardoso, Ré, Natália Correr, Caron, Matheus Luís, Fiorio, Peterson Ricardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traditional techniques for measuring leaf nitrogen content (LNC) involve slow and laborious processes, and radiometric data have been used to assist in the nutritional analysis of plants. Therefore, this study aimed to evaluate the performance of LNC predictions in corn plants based on laboratory hyperspectral Vis-NIR-SWIR data. The treatments corresponded to 60, 120, 180, and 240 kg ha−1 of nitrogen, in addition to the control (0 kg ha−1), and they were distributed using a randomized complete block design. At the laboratory, hyperspectral data of the leaves and LNC were obtained. The hyperspectral data were used in the calculation of different vegetation indices (VIs), which were applied in a predictive model—partial least squares regression (PLSR)—and the capacity of the prediction was assessed. The combination of bands and VIs generated a better prediction (0.74 < R2 < 0.87; 1.00 < RMSE < 1.50 kg ha−1) in comparison with the individual prediction by band (0.69 < R2 < 0.85; 1.00 < RMSE < 1.77 kg ha−1) and by VI (0.55 < R2 < 0.68; 1.00 < RMSE < 1.78 kg ha−1). Hyperspectral data offer a new opportunity to monitor the LNC in corn plants, especially in the region comprising the bands from 450 to 750 nm, since these were the bands that were most sensitive to the LNC.
ISSN:2624-7402
2624-7402
DOI:10.3390/agriengineering6040233