Finite Difference Method for the Hull–White Partial Differential Equations
This paper reviews the finite difference method (FDM) for pricing interest rate derivatives (IRDs) under the Hull–White Extended Vasicek model (HW model) and provides the MATLAB codes for it. Among the financial derivatives on various underlying assets, IRDs have the largest trading volume and the H...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2020-10, Vol.8 (10), p.1719 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper reviews the finite difference method (FDM) for pricing interest rate derivatives (IRDs) under the Hull–White Extended Vasicek model (HW model) and provides the MATLAB codes for it. Among the financial derivatives on various underlying assets, IRDs have the largest trading volume and the HW model is widely used for pricing them. We introduce general backgrounds of the HW model, its associated partial differential equations (PDEs), and FDM formulation for one- and two-asset problems. The two-asset problem is solved by the basic operator splitting method. For numerical tests, one- and two-asset bond options are considered. The computational results show close values to analytic solutions. We conclude with a brief comment on the research topics for the PDE approach to IRD pricing. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math8101719 |