Optimal resource allocation with spatiotemporal transmission discovery for effective disease control

The new waves of COVID-19 outbreaks caused by the SARS-CoV-2 Omicron variant are developing rapidly and getting out of control around the world, especially in highly populated regions. The healthcare capacity (especially the testing resources, vaccination coverage, and hospital capacity) is becoming...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Infectious diseases of poverty 2022-03, Vol.11 (1), p.34-34, Article 34
Hauptverfasser: Ren, Jinfu, Liu, Mutong, Liu, Yang, Liu, Jiming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The new waves of COVID-19 outbreaks caused by the SARS-CoV-2 Omicron variant are developing rapidly and getting out of control around the world, especially in highly populated regions. The healthcare capacity (especially the testing resources, vaccination coverage, and hospital capacity) is becoming extremely insufficient as the demand will far exceed the supply. To address this time-critical issue, we need to answer a key question: How can we effectively infer the daily transmission risks in different districts using machine learning methods and thus lay out the corresponding resource prioritization strategies, so as to alleviate the impact of the Omicron outbreaks? We propose a computational method for future risk mapping and optimal resource allocation based on the quantitative characterization of spatiotemporal transmission patterns of the Omicron variant. We collect the publicly available data from the official website of the Hong Kong Special Administrative Region (HKSAR) Government and the study period in this paper is from December 27, 2021 to July 17, 2022 (including a period for future prediction). First, we construct the spatiotemporal transmission intensity matrices across different districts based on infection case records. With the constructed cross-district transmission matrices, we forecast the future risks of various locations daily by means of the Gaussian process. Finally, we develop a transmission-guided resource prioritization strategy that enables effective control of Omicron outbreaks under limited capacity. We conduct a comprehensive investigation of risk mapping and resource allocation in Hong Kong, China. The maps of the district-level transmission risks clearly demonstrate the irregular and spatiotemporal varying patterns of the risks, making it difficult for the public health authority to foresee the outbreaks and plan the responses accordingly. With the guidance of the inferred transmission risks, the developed prioritization strategy enables the optimal testing resource allocation for integrative case management (including case detection, quarantine, and further treatment), i.e., with the 300,000 testing capacity per day; it could reduce the infection peak by 87.1% compared with the population-based allocation strategy (case number reduces from 20,860 to 2689) and by 24.2% compared with the case-based strategy (case number reduces from 3547 to 2689), significantly alleviating the burden of the healthcare system. Computationall
ISSN:2049-9957
2095-5162
2049-9957
DOI:10.1186/s40249-022-00957-1